Maths GCSE (Higher) **Learning Resource**

UO University of Northampton

Basic Surd Rules

$$\sqrt{! \times \#} = \sqrt{!} \times \sqrt{\#}$$

$$\sqrt{\underline{!} \div \#} = \sqrt{\underline{!}} \div \sqrt{\#}$$

$$\sqrt{!} \times \sqrt{!} = !$$

Rationalising Surds

$$\frac{!}{\sqrt{"}} \qquad \text{Get rid of the surd on the bottom by} \\ \text{multiplying top and bottom by that surd}.$$

$$\frac{!}{\sqrt{"}} \times \frac{\sqrt{"}}{\sqrt{"}} = \frac{\# \sqrt[4]{}}{\$}$$

This resource was developed in conjunction with the maths subject teaching staff at Sir Christopher Hatton Academy 2017-18

Rationalising Surds

$$\frac{!}{\sqrt{"}+\$}$$

Get rid of the surd expression on the bottom by multiplying by that surd expression but changing the sign.

$$\frac{!}{\sqrt{"} + \$} \times \frac{\sqrt{"} - \$}{\sqrt{"} - \$} = \frac{\&\sqrt{"} - \&($$

Basic Index Laws

$$!" \times !$$
 = $!"$ %

$$!^{-} = 1$$

Fractional Index Laws

$$!\overline{+} = \sqrt{!} \qquad !\overline{\hat{c}} = \sqrt{!} \qquad !\overline{\hat{c}} = \sqrt{!}$$

$$\underline{\underline{!}}^{\underline{\$}}_{\%} = (\sqrt[\%]{\underline{!}})$$

Compound Interest

final amount = starting amount x % multiplier number of years

£5000 is invested in a savings account. It earns compound interest at a rate of 4% per annum. How much will be in the account after 6 years?

£5000 x 1.046 = £6326.60

Density, Mass and Volume

density - g/cm3, kg/m3

DON'T MARRY VAMPIRES!

mass - grams (g), kilograms (kg)

volume - cm3, m3

Direct & Inverse Proportion

y is proportional to x

y is inversely proportional to x

$$y = \frac{\$}{4}$$

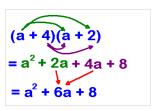
Substitute values to find k.

Substitute values to find k.

Key Word Facts

ALGEBRA	YOU NEED TO KNOW
Expression	Numbers and letters, has NO = sign
Equation	Numbers and letters <u>HAS AN =</u> sign
Substitute	To replace a letter with a number
Like Terms	Collect the same combination of letters together and all the numbers together
Simplify	Collect all the like terms
Expand	Get rid of the brackets (multiply out brackets)
Factorise	Put Brackets back in

Simultaneous Equations


Different

Add

Same

Subtract

Expanding Double Brackets

Factorising Quadratics with a Coefficient

Quadratic Formula

A quadratic equation is in the form $ax^2 + bx + c = 0$

The quadratic formula is:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Completing the Square

Complete the square: $x^2 + 6x - 11 = 0$

• Half the coefficient of x and put in brackets

• Square the number in the bracket and subtract it

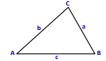
 $(x + 3)^2 - 11 - 3^2$ $(x + 3)^2 - 11 - 9$

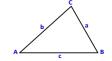
 $(x + 3)^2 - 20$ The turning point of this graph will be (-3, -20)

Congruency Rules

Circle Theorems

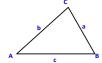
Angle at centre is twice the




Sine Rule

$$\sin A = \sin B = \sin C$$

$$\frac{\sin A}{\sin B} = \frac{\sin B}{\sin C} = \frac{\sin C}{\sin C}$$


Cosine Rule

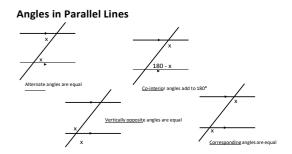
Side
$$!'' = \$'' + \&'' - 2\$ \&)*+$$

Angle
$$\cos A = \frac{1^2 34^2 56^2}{114}$$

Area of a Triangle

Area =
$$\frac{1}{2}$$
\$\%'()

Standard Trigonometric Values


in a cyclic quadrilateral

	0°	30°	45°	60°	90°
Sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
Cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0
Tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-

Sectors of Circles

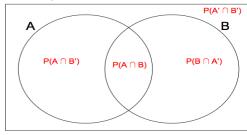
Arc length = $2\pi r \times \frac{\theta}{360}$

Probability Rules

the 'and' rule: P(A) and $P(B) = P(A) \times P(B)$

the 'or' rule: P(A) or P(B) = P(A) + P(B)

Sample Space Diagram


shows all outcomes

Tree Diagrams

FIRS		ОИТСОМЕ	PROBABILITY
	1/2 H	НН	1/2 X 1/2 = 1/4
1/2 H	1/2 T	НТ	1/2 X 1/2 = 1/4
1/2 T	1/2 H	TH	1/2 X 1/2 = 1/4
	1/2 T	TT	1/2 X 1/2 = 1/4

Venn Diagram Notation

Averages from a Grouped Frequency Table

Weight, w, Kg	Frequency
40 < w ≤ 50	2
$50 < w \leq 60$	15
$60 < w \leq 70$	18
$70 < w \leq 80$	10
80 < w ≤ 90	2

Modal Class Group with the highest frequency 60 < w ≤ 70

Class in which the Median lies $(\frac{I''\#}{\mathfrak{E}})$ where n is the number of values (%%"#) = 24th value

Count up from frequency 24^{th} value is in $60 < w \le 70$

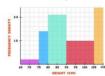
Averages from a Grouped Frequency Table

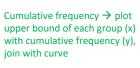
	Frequency	Weight, w, Kg
90	45 2	40 < w ≤ 50
825	55 15	$50 < w \le 60$
117	65 18	$60 < w \leq 70$
750	75 10	$70 < w \le 80$
170	85 2	$80 < w \leq 90$

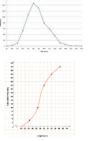
Estimate for the Mean • Find midpoints of groups · Multiply midpoint by frequency • Divide total of (midpoint x frequency) by total

 $3005 \div 47 = 63.9$ kg (1 dp)

frequency


Histograms Frequency density


The area of each bar will give the frequency!



midpoints (x) with frequency (y), join with straight lines

Frequency polygon → plot

Graphs from Grouped Data

